Skip to main content
ICT
Lesson A9 - Recursion
 
Main Previous Next
Title Page >  
Summary >  
Lesson A1 >  
Lesson A2 >  
Lesson A3 >  
Lesson A4 >  
Lesson A5 >  
Lesson A6 >  
Lesson A7 >  
Lesson A8 >  
Lesson A9 >  
Lesson A10 >  
Lesson A11 >  
Lesson A12 >  
Lesson A13 >  
Lesson A14 >  
Lesson A15 >  
Lesson A16 >  
Lesson A17 >  
Lesson A18 >  
Lesson A19 >  
Lesson A20 >  
Lesson A21 >  
Lesson A22 >  
Lesson AB23 >  
Lesson AB24 >  
Lesson AB25 >  
Lesson AB26 >  
Lesson AB27 >  
Lesson AB28 >  
Lesson AB29 >  
Lesson AB30 >  
Lesson AB31 >  
Lesson AB32 >  
Lesson AB33 >  
Vocabulary >  
 

LAB ASSIGNMENT A9.1 page 7 of 8

Fibonacci

Background:

The Fibonacci number series is defined as follows:

Position
0
1
2
3
4
5
6
7
8
etc.
Fib number
0
1
1
2
3
5
8
13
21
etc.

Positions 0 & 1 are definition values. For positions greater than 1, the corresponding Fibonacci value of position
N = Fib (N-1) + Fib (N-2)
.

Assignment:

  1. Write a recursive method that takes in a single integer (x >= 0) and returns the appropriate Fibonacci number of the Fibonacci number series.

  2. Write a method that solves a multiplication problem recursively.

Instructions:

Use these sample run output values:

Recursive Fibonacci: 0, 3, 11

Recursive multiplication: 0 * 4 , 3 * 1 , 7 * 8 , 5 * 0 , 45 * 11

 

Main Previous Next
Contact
 © ICT 2006, All Rights Reserved.