Skip to main content
ICT
Lesson A21 - Number Systems
 
Main Previous Next
Title Page >  
Summary >  
Lesson A1 >  
Lesson A2 >  
Lesson A3 >  
Lesson A4 >  
Lesson A5 >  
Lesson A6 >  
Lesson A7 >  
Lesson A8 >  
Lesson A9 >  
Lesson A10 >  
Lesson A11 >  
Lesson A12 >  
Lesson A13 >  
Lesson A14 >  
Lesson A15 >  
Lesson A16 >  
Lesson A17 >  
Lesson A18 >  
Lesson A19 >  
Lesson A20 >  
Lesson A21 >  
Lesson A22 >  
Lesson AB23 >  
Lesson AB24 >  
Lesson AB25 >  
Lesson AB26 >  
Lesson AB27 >  
Lesson AB28 >  
Lesson AB29 >  
Lesson AB30 >  
Lesson AB31 >  
Lesson AB32 >  
Lesson AB33 >  
Vocabulary >  
 

D. Hexadecimal page 6 of 11

  1. Hexadecimal is base 16. This base works exactly the same as base 10 and base 8. Hexadecimal will allow the digits 0 through 15. This gets confusing, however, because the digits 10 through 15 are double digits and raises the question: is 10 a single value or two symbols? To avoid confusion we use other symbols, A through F, to represent the values of 10 through 15. Let's use the hexadecimal number 34CD and convert it to decimal. This number has the value of:

    3*163 + 4*162 + 12*161 + 13*160
    12288 + 1024 + 192 + 13
    13517

    So the hexadecimal number 34CD is equivalent to 13517 in base 10 (decimal).

    Converting from decimal to hexadecimal is the same process used for octal earlier:

    12547 ->
          12547/( 163) -> 3, remainder 259

          259/( 162) -> 1, remainder 3

          3/( 161) -> 0, remainder 3

    So 12547 in the decimal number system is equivalent to 310316 in the hexadecimal system.

 

Main Previous Next
Contact
 © ICT 2006, All Rights Reserved.