Skip to main content
ICT
Lesson A21 - Number Systems
 
Main Previous Next
Title Page >  
Summary >  
Lesson A1 >  
Lesson A2 >  
Lesson A3 >  
Lesson A4 >  
Lesson A5 >  
Lesson A6 >  
Lesson A7 >  
Lesson A8 >  
Lesson A9 >  
Lesson A10 >  
Lesson A11 >  
Lesson A12 >  
Lesson A13 >  
Lesson A14 >  
Lesson A15 >  
Lesson A16 >  
Lesson A17 >  
Lesson A18 >  
Lesson A19 >  
Lesson A20 >  
Lesson A21 >  
Lesson A22 >  
Lesson AB23 >  
Lesson AB24 >  
Lesson AB25 >  
Lesson AB26 >  
Lesson AB27 >  
Lesson AB28 >  
Lesson AB29 >  
Lesson AB30 >  
Lesson AB31 >  
Lesson AB32 >  
Lesson AB33 >  
Vocabulary >  
 

E. Binary page 7 of 11

  1. Not surprisingly, binary works the same way as octal and hexadecimal. Binary is base 2, so the only digits that are used are 0 and 1, and the place values are all powers of 2. A binary digit is called a bit. The place values for binary are shown in the table below.
    23
    22
    21
    20
    2-1
    2-2
    8
    4
    2
    1
    1/2
    1/4

Let's convert two decimal numbers into the binary system: 13 and 482.

The decimal number 13 -> 11012 (1*23 + 1*22 + 0*21 +1*20)

The decimal number 482 -> 1111000102

Calculations for converting 482:
Find the largest power of two that divides into 482. So 28, or 256.
482/256 = 1 , subtract to get the leftover, 226.
Now check to see if 27, 128 goes into 226. Notice we only have the choice of 1 or 0 so this will be simple to calculate. 226 - 128 -> 98 (another 1)
98-64 -> 34 (another 1)
34-32 ->2 (another 1)
can’t subtract 16 (so a 0 goes here)
can’t subtract 8 (another 0)
can’t subtract 4 (another 0)
2 - 2 -> 0 (another 1)
can’t subtract 1 (another 0)

Answer: 1111000102

 

Main Previous Next
Contact
 © ICT 2006, All Rights Reserved.