Skip to main content
ICT
Lesson A21 - Number Systems
 
Main Previous Next
Title Page >  
Summary >  
Lesson A1 >  
Lesson A2 >  
Lesson A3 >  
Lesson A4 >  
Lesson A5 >  
Lesson A6 >  
Lesson A7 >  
Lesson A8 >  
Lesson A9 >  
Lesson A10 >  
Lesson A11 >  
Lesson A12 >  
Lesson A13 >  
Lesson A14 >  
Lesson A15 >  
Lesson A16 >  
Lesson A17 >  
Lesson A18 >  
Lesson A19 >  
Lesson A20 >  
Lesson A21 >  
Lesson A22 >  
Lesson AB23 >  
Lesson AB24 >  
Lesson AB25 >  
Lesson AB26 >  
Lesson AB27 >  
Lesson AB28 >  
Lesson AB29 >  
Lesson AB30 >  
Lesson AB31 >  
Lesson AB32 >  
Lesson AB33 >  
Vocabulary >  
 

F. Short Cuts Between Binary, Octal, and Hexadecimal page 8 of 11

  1. There is a relationship between binary, octal, and hexadecimal numbers. Binary is base 2, octal is base 8(23) and hexadecimal is base 16(24). Let's convert the binary number 101101011010111 to a hexadecimal number.

    Binary -> hexadecimal
    101101011010111

  2. Starting at the rightmost digit, split the number into groups of 4
    101 1010 1101 0111

  3. Each of these groups has 4 binary digits that can range from 0 -15. This is exactly the value of one hexadecimal digit, so match each group of four bits with one hexadecimal digit.
Binary Number Groups
Hexadecimal Equivalent
101
5
1010
A
1101
D
0111
7

So our binary number is equivalent to 5AD716. Going from hexadecimal reverses the procedure so each hexadecimal digit expands to 4 bits.

The same process occurs between octal and binary using only 3 bits.

Try the following conversions for practice:

10 110 1012 -> ___ ____ ____8
3F116 -> _____ _____ _____2
3528 -> _____ _____ _____2
482 ->____________2
482 -> ___________8
482 -> ________16
100012 -> _______10
57768 -> _______10
3DB16 -> _______10
110 111 0102 -> ___ ____ ____8
1011 0010 11112 -> ___ ____ ____16
3FA16 -> _____ ______ ______2
7128 -> ______ ______ ______2

The answers appear at the end of this lesson.

 

Main Previous Next
Contact
 © ICT 2006, All Rights Reserved.